Abstract

Sophisticated electronic devices comprising sensitive microelectronic components have been installed in the close proximity of the 720 MeV superconducting electron linear accelerator (linac) driving the FLASH (Free Electron Laser in Hamburg), presently in operation at DESY in Hamburg. Microelectronic chips are inherently vulnerable to ionizing radiation, usually generated during routine operation of high-energy particle accelerator facilities like the FLASH. Hence, in order to assess the radiation effect on microelectronic chips and to develop suitable mitigation strategy, it becomes imperative to characterize the radiation field in the FLASH environment. We have evaluated the neutron and gamma energy (spectra) and dose distributions at critical locations in the FLASH tunnel using superheated emulsion (bubble) detectors, GaAs light emitting diodes (LED), LiF-thermoluminescence dosimeters (TLD) and radiochromic (Gafchromic EBT) films. This paper highlights the application of passive dosimeters for an accurate analysis of the radiation field produced by high-energy electron linear accelerators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call