Abstract

A thin-foil infrared bolometer has been developed to measure the plasma radiation quantitatively during plasma disruptions in the KSTAR tokamak. We present analytic solutions of a 0D heat transfer model, which enable the estimation of the plasma radiation from the bolometer signal. The analytical solutions for the linear response regime give practical ways by which the radiation power and energy can be estimated from the cooling time scale of the bolometer signal. A useful way of evaluating the linear response of the system is also introduced. The analysis is complemented by 2D heat transfer simulations. The bolometer signals from the shattered pellet injection experiments in the 2020 KSTAR campaign are analyzed and interpreted according to the heat transfer models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.