Abstract

AbstractShort- and long-wave radiation on variously oriented vertical surfaces, direct solar radiation, global radiation, and long–wave radiation on a horizontal surface were measured on Lewis Glacier, Mount Kenya, at 4800 m. For the orientation of vertical surfaces, the following azimuths were selected: 45°, facing the steep slope of the upper glacier; 135°, facing a rock ridge and some glacier surface in the foreground; 225°, facing down–glacier towards the Teleki valley with open sky occupying much of the view; and 315°, directed towards the steep south-east face of the Nelion peak.The horizontal components of diffuse short-wave radiation reach a magnitude comparable to those of direct radiation. As a result of contrastingly different albedos of natural surfaces, the horizontal component of diffuse short–wave radiation is particularly large from the direction of the upper glacier, with values around 330–500 W m−2, and smallest from the direction of the rock face of Nelion peak, where values are around 150–330 W m−2. Long–wave radiation seems enhanced from the direction of the Nelion face, and reduced from the azimuth of the upper glacier, thus apparently reflecting differences in emissivity and temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call