Abstract
To determine whether D-penicillamine, known to reduce fibrosis in irradiated rat lung (W. F. Ward, A. Shih - Hoellwarth , and R. D. Tuttle , Radiology 146, 533-537, 1983), also ameliorates radiation injury in the pulmonary endothelium, we measured angiotensin-converting enzyme (ACE) activity, plasminogen activator (PLA) activity, and prostacyclin (PGI2) production in the lungs of penicillamine-treated (10 mg/day, po, continuous after irradiation) and untreated rats from 2 weeks to 6 months after a single dose of 25 Gy of 60Co gamma rays to the right hemithorax. Both ACE and PLA activity in the irradiated right lung of untreated rats decreased dramatically between the 1st and 2nd months after exposure, then reached a plateau through 6 months at approximately 25 and 50% of the normal level, respectively. For the first 2 months after irradiation, penicillamine-treated animals exhibited significantly (P less than 0.05) higher activities of both ACE and PLA than did untreated rats. From 3 to 6 months after irradiation, however, the only significant drug effect on these enzymes was a 25% increase in PLA activity at 6 months. PGI2 production by the irradiated lung of untreated rats increased continuously, and at 6 months was approximately 10 times higher than normal. Penicillamine significantly (P less than 0.05) reduced this hypersecretion, and at 6 months after irradiation, PGI2 production by the lungs of drug-treated rats was only half that of untreated animals. In contrast, the drug had no significant effect on enzyme activities in the lungs of sham-irradiated rats. Thus the antifibrotic agent D-penicillamine delays the onset of radiation-induced enzyme dysfunction in the pulmonary endothelium. In addition at 6 months after irradiation, the lungs of penicillamine-treated rats exhibit 25% more PLA activity and only half as severe a hypersecretion of PGI2 as do the lungs of untreated animals. The drug is most effective in ameliorating endothelial damage during the first 2 months after irradiation, preceding the development of interstitial fibrosis. However, the effect of this penicillamine regimen on pulmonary endothelial function is not as large as its effect on collagen accumulation in irradiated rat lung.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.