Abstract

Purpose Radiation exposure of crickets during their fourth juvenile molt inflicted ionizing radiation damage and altered growth rate, adult size at sexual maturity. High levels of ionizing radiation also impacted the subsequent generation, likely via heritable epigenetic mechanisms. Using radiation as a proxy for external stress, we aim to understand the transgenerational impacts of stress on non-irradiated offspring. Methods and materials We assess the impacts of ionizing radiation on maturation mass and growth rate in F0 male and female house crickets (Acheta domesticus). We also assessed trans-generational impacts of irradiation on growth rate and maturation mass on non-irradiated offspring of irradiated parents compared to non-irradiated controls. Results Early-life exposure to high levels of ionizing radiation-induced lower growth rate and maturation mass compared to controls (p < .0001). Non-irradiated male F1 offspring of irradiated parents demonstrated significantly lower mass at maturation (p = .0012) and significantly faster time of maturation (p < .0001) compared to F1 non-irradiated controls. Conclusion Our results show that a single early-life exposure to ionizing radiation can alter male offspring development through accelerated maturation and reduced maturation mass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call