Abstract

We have studied changes in the hole transport properties of a smectic liquid crystalline semiconductor resulting from high-energy electron irradiation. The “radiation doping” results in sharply increased shallow trap densities and the onset of nearly trap-limited hopping conduction. A simple semiquantitative model provides estimates of the trap lifetime and the irradiation energy required to create a single trap. Experimental techniques to overcome parasitic effects due to increased molecular ion densities in irradiated samples are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call