Abstract
Radiation therapy (RT) has the potential to activate the tumor-microenvironment (TME) and promote the efficacy of immune checkpoint blockade therapy. Tumor cell-intrinsic expression of cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) plays an important role in regulations of radiation-induced activation of immune cells in the TME. However, the role of tumor cell-intrinsic cGAS-STING in radiation-mediated remodeling of the TME in esophageal squamous cell carcinoma (ESCC) is not completely understood; thus, we investigated its effect on the radiation-mediated remodeling of the TME in ESCC. We assessed the effect of tumor cell-intrinsic cGAS-STING on the expression of mediators of the immune system, including type I interferon, T-cell chemo-attractants, colony-stimulating factor-1, and interleukin 34 (IL-34), induced by radiation in ESCC cell lines. We also quantified the association between tumor cell-intrinsic expression of cGAS-STING and infiltrations of immune cells, including CD8+ T cells and CD163+ M2-tumor-associated macrophages (TAMs), in ESCC tissues before and after neoadjuvant chemo-RT (n=47). We found that tumor cell-intrinsic expression of cGAS-STING was involved in radiation-induced infiltration of CD8+ T cells and expression of type I interferon and T-cell chemo-attractants in ESCC cells. Surprisingly, tumor cell-intrinsic cGAS-STING was also involved in radiation-triggered infiltration and/or M2-polarization of CD163+ TAMs and expression of IL-34, an important cytokine for recruitment and M2-polarization of TAMs, in ESCC cells. The number of CD163+ M2-TAMs was significantly associated with IL-34 expression in tumor cells in irradiated ESCC tissues. The tumor cell-intrinsic expression of cGAS-STING is essential for radiation-induced activation of immune cells in the TME, but it is also involved in the recruitment of tumor-promoting M2-TAMs in ESCC. Therefore, blocking of M2-TAM infiltration by targeting IL-34 might improve the efficacy of RT and combination therapy of RT with immune checkpoint inhibitors in ESCC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Radiation Oncology*Biology*Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.