Abstract

Antiplatelet reagents have been reported to protect against intestinal damage associated with abdominal radiotherapy, but the mechanisms behind radiation-induced platelet-endothelium interactions are not known. We sought to define the adhesive mechanisms that regulate radiotherapy-induced platelet-endothelial cell interactions in the colon. All mice except the controls were exposed to abdominal radiation with a single dose of 20 Gray. Mice were pretreated with an isotype-matched control antibody or a monoclonal antibody directed against either P-selectin or P-selectin glycoprotein ligand-1 (PSGL-1). Platelet and leukocyte rolling and adhesion in the colon were determined by use of inverted intravital fluorescence microscopy 16 hours after radiation. Radiation-induced intestinal leakage of fluorescein isothiocyanate-conjugated dextran was examined in separate experiments. Immunoneutralization of P-selectin decreased radiation-provoked platelet rolling by 87% and adhesion by 63%. Moreover, inhibition of PSGL-1 decreased platelet rolling and adhesion by 77% and 83%, respectively, in animals exposed to radiation. Similarly, inhibition of P-selectin and PSGL-1 decreased radiation-induced leukocyte rolling and adhesion by more than 84% and 90%, respectively, in the colon. In contrast, inhibition of P-selectin or PSGL-1 had no impact on radiation-induced intestinal leakage. In addition, systemic depletion of platelets and leukocytes did not affect intestinal barrier dysfunction in radiated animals. This study demonstrates that radiation-provoked platelet and leukocyte accumulation are mediated in part by P-selectin and PSGL-1. Radiation-induced gut leakage, however, is independent of accumulation of platelets and leukocytes in the intestinal microvasculature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.