Abstract

Radiation-induced molecular imprinting of d-glucose onto poly(2-hydroxyethyl methacrylate) matrix was achieved to create three-dimensional cavities to recognize and bind d-glucose. The optimization of imprinting capability of matrices was achieved by investigating the effects of various parameters such as the type and amount of crosslinking agent, type of solvent, template to monomer ratio and total absorbed dose. Crosslinking agents with increasing chain lengths and different flexibilities were used in an attempt to elucidate the impact of relevant imprint parameters on the effectiveness of imprinting technique. The absorbed dose varied from 1 to 15 kGy. Cavity sizes of MIPs were measured by positron annihilation lifetime (PAL) experiments. Control matrices were synthesized with exactly the same composition in the absence of d-glucose. Separation of d-glucose has been shown to be successfully achieved in HPLC columns filled with MIPs whereas no separation was observed for non-imprint matrices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.