Abstract

Radiation-induced genomic instability (GI) is hypothesized to persist after exposure and ultimately promote carcinogenesis. Based on the absorbed dose to the breast, an increased risk of developing breast cancer was shown in the Swedish hemangioma cohort that was treated with radium-226 for skin hemangioma as infants. Here, we screened 31 primary breast carcinomas for genetic alterations using the OncoScan CNV Plus Assay to assess GI and chromothripsis-like patterns associated with the absorbed dose to the breast. Higher absorbed doses were associated with increased numbers of copy number alterations in the tumor genome and thus a more unstable genome. Hence, the observed dose-dependent GI in the tumor genome is a measurable manifestation of the long-term effects of irradiation. We developed a highly predictive Cox regression model for overall survival based on the interaction between absorbed dose and GI. The Swedish hemangioma cohort is a valuable cohort to investigate the biological relationship between absorbed dose and GI in irradiated humans. This work gives a biological basis for improved risk assessment to minimize carcinogenesis as a secondary disease after radiation therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.