Abstract

Transient radiation-induced effects in air-guiding photonic crystal fibers (Air-PCF) are investigated for the first time to our knowledge. We characterize the vulnerability of this kind of waveguide by measuring the time dependent changes of their radiation-induced attenuation (RIA) at 1.55 /spl mu/m. We compare their radiation response to those of two silica-based single-mode fibers with germanium-doped and pure-silica cores. An X-ray pulse induces globally the same effects in all waveguides: a strong and transient increase of RIA. For higher tested doses (10<D<100 Gy), Air-PCF exhibits an interesting saturation of RIA at /spl sim/0.1 dB/m. The possible mechanisms involved in this radiation response are discussed. In particular, we assume that the design of the photonic bandgap structure of the fiber, responsible for the light guidance in the air-core, could strongly affect the amplitude of RIA. The kinetics of RIA recovery depends predominantly on the point defects created at the air/silica interface and in the silica-based part of the microstructured cladding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.