Abstract
The yields of molecular products resulting from radiolysis of hydroxyl-containing amino acids and dipeptides under various conditions were determined. The possibility of a new radiation-induced destruction pathway has been shown for serine and threonine, as well as for the dipeptides having residues of these amino acids at the N-terminal part of the respective molecule. This process includes formation of N-centered radicals from the starting molecules followed by their decomposition with elimination of side substituents. On radiolysis, serine and threonine were also shown to undergo free-radical destruction to form acetaldehyde and acetone, respectively. A mechanism has been proposed including consecutive stages of fragmentation of α-hydroxyl-containing carbon-centered radicals with elimination of ammonia and decomposition of the secondary radicals with elimination of CO2. The yields of CO2 obtained on radiolysis of serine and threonine were significantly higher (except for solutions at pH 12) than those for alanine and valine, which have no hydroxyl groups in their structures. The obtained data indicate that the hydroxyl-containing amino acids occupy a special place among other amino acids as regards the variety of radiation-induced reactions which they may undergo due to their structural features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.