Abstract

The effects of g-irradiation on solid poly(ethylene oxide) (PEO) of an initial weight-average molecular weight of 6.3.105 Da were investigated by gel permeation chromatography and viscometry. The parameters studied were changes in number- and weight-average molecular weight, molecular weight distribution and viscosity of PEO in aqueous solution. Irradiation of poly(ethylene oxide) powder in the presence of oxygen leads to the dominance of chain scission reactions. Their high radiation-chemical yield [G(scission) » 2.5.10-6 mol/J] indicates the occurrence of effective chain reactions. Upon irradiation in vacuum, crosslinking and scission occur side-by-side and the changes in molecular weight are less pronounced in the studied dose range (up to 20 kGy). Scission dominates for doses up to ca. 15 kGy, while for higher doses intermolecular crosslinking gains in importance. The competition between these processes seems to depend not only on the applied dose but also to be influenced by the inhomogenity of the material (molecular weight and/or possibly the crystallinity). Parallel occurrence of scission and crosslinking leads to the broadening of the molecular weight distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call