Abstract

The luminescence and thermal stability of defects formed in α-Al2O3 single crystals after powerful (300 keV) pulsed irradiation with C+/H+ ion beam were investigated. It was found by measuring of optical density, photoluminescence, and pulsed cathodoluminescence that ion irradiation induces both single F-, F+-centers and F2-type aggregate centers. An intense thermoluminescence band with a complex shape was observed in the broad temperature range of 350–700 K, its intensity decreases with increasing of the energy density of the ion beam. The thermal stability of the F-type defects produced in α-Al2O3 after irradiation with a pulsed ion beam is comparable to that in neutron-irradiated samples. The appropriate kinetics of annealing of radiation-induced defects has been analyzed in terms of the diffusion-controlled bimolecular reactions between F-type centers and complementary interstitial oxygen ions. Thus, two important kinetic parameters – the migration energy of mobile interstitials and pre-exponential – have been evaluated and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call