Abstract
We propose to identify the displacement damage defects induced by proton and carbon irradiations in a commercial off-the-shelf pinned photodiode (PPD) 8T-CMOS image sensors (CISs) dedicated to space application operating in global shutter mode. This paper aims to provide a better understanding of defects creation in a specific space image sensor. Therefore, it leads to comparable results to those we could find during the mission. The study focuses on bulk defects located in the PPD depleted region which represents the main dark current contribution in PPD CIS. Four sensors have been irradiated with carbon ions and protons at different energies and fluencies. Using both the dark current spectroscopy and the random telegraph signal (RTS) analysis, we investigate defects behavior for different isochronal annealing temperatures. By combining these results, we make the connection between two complementary phenomena and bring out the prevalence of divacancies-based defects in term of dark current contribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.