Abstract

This mini-review focuses on the recent identification of several novel radiation-induced single and tandem modifications in cellular DNA. For this purpose accurate high-performance electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) was applied allowing their quantitative measurement and unambiguous characterization. Exposure of human cells to gamma rays led to the formation of several modified bases arising from the rearrangement of the pyrimidine ring of thymine, cytosine and 5-methylcytosine subsequent to initial addition of an hydroxyl radical (•OH) to the 5,6-ethylenic bond. In addition, 5-hydroxymethylcytosine, an novel epigenetic mark, and 5-formylcytosine, were found to be generated consecutively to •OH-mediated hydrogen abstraction from the methyl group of 5-methylcytosine. Relevant mechanistic information on one-oxidation reactions of cellular DNA was also gained from the detection of 5-hydroxycytosine and guanine-thymine intra-strand adducts whose formation is rationalized by the generation of related base radical cation. Attempts to search for the radiation-induced formation of purine 5′,8-cyclo-2′-deoxyribonucleosides were unsuccessful with the exception of trace amounts of (5′S)-5′,8-cyclo-2′-deoxyadenosine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.