Abstract
Proximate to nuclear power plant severe accidents, sustained high levels of gamma radiative flux are perilous not only to human health but also to the functionality of conventional radiation-monitoring devices. Effective accident mitigation presents a significant challenge because the gamma radiation adversely affects the means by which it is measured. Deployments of large numbers of radiation-hardened monitoring devices, required to meet the demands of adequate system reliability and the large spatiotemporal scales associated with such accidents, are expected to be prohibitively expensive. As an affordable alternative, this paper proposes usage of a wireless sensor network (WSN) built with unshielded low-cost integrated circuits (ICs) acting as consumable proportional sensors of gamma radiation dose. Adverse responses of ICs to damaging gamma radiation dose can be characterized statistically, in controlled laboratory experiments. In subsequent field application, responses of individual ICs, transmitted over a WSN to a remote computer, can be translated into local dose measurements using correlations obtained via the laboratory characterization. Experiments to characterize adverse response to radiation dose were performed on multiple complementary metal-oxide-semiconductor–based electrically erasable programmable read-only memory devices in a Gammacell 220 Cobalt-60 Irradiation Unit (60Co source) at the Canadian Nuclear Laboratories. Details of the experiments, data analyses, and a small-scale prototype WSN are discussed in this paper. Outcomes of the experiments a nd analysis support the concept of using low-cost consumable ICs in a WSN to measure high levels of gamma radiation dose associated with nuclear power plant severe accidents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.