Abstract

Gamma-radiation-induced oxidative damage in unilamellar dipalmitoylphosphatidylcholine liposomes was investigated using a fluorescence technique. Liposomal changes in permeability induced by gamma radiation were monitored by measuring the leakage of pre-encapsulated 6-carboxyfluorescein, and alterations in lipid bilayer fluidity were determined by 1,6-diphenyl-1,3,5-hexatriene fluorescence polarization. The changes in permeability and fluidity in the bilayer were found to be dependent on the radiation dose in a biphasic fashion. The results are interpreted in terms of lipid bilayer fluidization after exposure to doses up to 1 kGy, but rigidization of the bilayer at higher doses. These results indicate a relationship between alterations in permeability and fluidity in the lipid bilayer after irradiation. The vesicles were protected significantly against radiation-induced oxidative damage in the presence of alpha-tocopherol and ascorbic acid. Radiation-induced changes in the permeability of the liposomes after exposure to gamma radiation and their modification by antioxidants indicate the involvement of a free radical mechanism in the production of damage, which may offer new insights in to the modification of cellular radiosensitivity by modulation of membrane damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.