Abstract

The gamma radiation induced catalytic degradation of p-nitrophenol (PNP) in the presence of titanium dioxide (TiO 2) nanoparticles in aqueous solution was investigated. The initial concentration of PNP solution was 50 mg/L, and the additional TiO 2 doses were 0, 0.5, 1.0, and 2.0 g/L. The experimental results indicated that the PNP decomposition kinetics conformed to the modified pseudo-first order reaction equation under all applied conditions. When the TiO 2 dose was in the range of 0–2.0 g/L, the effect of additional TiO 2 on PNP decomposition rate was not obvious because PNP could be removed quite well by irradiation even in the absence of TiO 2 nanoparticles; however, the removal of total organic carbon (TOC) and total nitrogen (TN) was significantly accelerated in the presence of TiO 2 nanoparticles, the TOC removal efficiency increased from about 16% to 42%, and therefore the mineralization of PNP could be enhanced by TiO 2 nanoparticles. The inorganic nitrogen products were quantitatively measured to estimate the decomposition degree of PNP. The major aromatic intermediates, as well as carboxylic acids were identified by LCMS and IC. Possible reactions involved in radiation induced catalytic decomposition of PNP in aqueous solutions were proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call