Abstract
Radiation inactivation was used to estimate the molecular weight of the benzodiazepine (BZ), gamma-aminobutyric acid (GABA), and associated chloride ionophore (picrotoxinin/barbiturate) binding sites in frozen membranes prepared from rat forebrain. The target size of the BZ recognition site (as defined by the binding of the agonists [3H]diazepam and [3H]flunitrazepam, the antagonists [3H]Ro 15-1788 and [3H]CGS 8216, and the inverse agonist [3H]ethyl-beta-carboline-3-carboxylate) averaged 51,000 +/- 2,000 daltons. The presence or absence of GABA during irradiation had no effect on the target size of the BZ recognition site. The apparent molecular weight of the GABA binding site labelled with [3H]muscimol was identical to the BZ receptor when determined under identical assay conditions. However the target size of the picrotoxinin/barbiturate binding site labelled with the cage convulsant [35S]t-butylbicyclophosphorothionate was about threefold larger (138,000 daltons). The effects of lyophilization on BZ receptor binding activity and target size analysis were also determined. A decrease in the number of BZ binding sites (Bmax) was observed in the nonirradiated, lyophilized membranes compared with frozen membranes. Lyophilization of membranes prior to irradiation at -135 degrees C or 30 degrees C resulted in a 53 and 151% increase, respectively, in the molecular weight (target size) estimates of the BZ recognition site when compared with frozen membrane preparations. Two enzymes were also added to the membrane preparations for subsequent target size analysis. In lyophilized preparations irradiated at 30 degrees C, the target size for beta-galactosidase was also increased 71% when compared with frozen membrane preparations. In contrast, the target size for glucose-6-phosphate dehydrogenase was not altered by lyophilization.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.