Abstract

To extend Shapiro's (1973a, b) calculations of black hole accretion to the regimes of interstellar gas densities and of black hole masses for which emergent luminosities are expected to be high, the radiation hydrodynamics of spherically symmetric gas flows in static isotropic metrics is discussed. Since for the more luminous objects the optical depth of the accretion volume becomes large, particular attention has to be paid to radiative transfer through non-Euclidean spaces, and a method for solving the full transfer problem is presented. The method is applied to accretion into black holes of mass between 10M⊙ and 105M⊙, under the conservative assumption that all other heat sources, like dissipation of magnetic or turbulent energy, can be neglected in comparison to the compressional work term,p dV. In the interstellar gas parameter range of interest, the radiation field is then dominated by emission and absorption of synchrotron radiation from inner zones of the flow. Temperature stratifications, luminosities and emergent spectra resulting from these processes are calculated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call