Abstract

The one-dimensional theory of double ablation fronts is developed for direct-drive inertial confinement fusion targets. The theory is based on the subsonic ablation front approximation and includes the effects of both radiation and electron heat fluxes. It is found that the structure of the ablation front is determined by two dimensionless parameters: the Boltzmann number and the effective mean free path. The Boltzmann number represents the ratio of the convective thermal and radiation energy fluxes, while the effective mean free path is the ratio between the characteristic plasma temperature gradient conduction scale length and the radiation mean free path. The development of a double ablation front is determined based on the range of the above dimensionless parameters. Temperature and density profiles in double ablation fronts are derived from a simplified analytic model and compared with the results of numerical simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call