Abstract

As a fundamental and crucial research topic in the direct-driven inertial confinement fusion (ICF), especially for shock ignition (SI), investigation on the laser coupling with planar low-Z targets is beneficial for deep physical comprehension at the primary phase of SI. The production of the intense shock and the shock coalescence in the multi-layer targets, driven by the 3ω intense laser (351 nm the wavelength), were studied in detail with the 1D and 2D radiation hydrodynamic simulations. It was inferred that the 1D simulation would overrate the shock velocity and the ablation pressure of the spike; the coalescence time and the velocity of the coalescence shock depended evidently on the pulse shape and the start time of the spike. The present study can also provide a semi-quantitative reference for the design of the SI decomposition experiments on the Shenguang-III prototype laser facility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.