Abstract
We investigated the efficiencies of two different approaches to increase the radiation hardness of optical amplifiers through development of improved rare-earth (RE) doped optical fibers. We demonstrated the efficiency of codoping with Cerium the core of Erbium/Ytterbium doped optical fibers to improve their radiation tolerance. We compared the γ-rays induced degradation of two amplifiers with comparable pre-irradiation characteristics (~19 dB gain for an input power of ~10 dBm): first one is made with the standard core composition whereas the second one is Ce codoped. The radiation tolerance of the Ce-codoped fiber based amplifier is strongly enhanced. Its output gain decrease is limited to ~1.5 dB after a dose of ~900 Gy, independently of the pump power used, which authorizes the use of such fiber-based systems for challenging space missions associated with high total doses. We also showed that the responses of the two amplifiers with or without Ce-codoping can be further improved by another technique: the pre-loading of these fibers with hydrogen. In this case, the gain degradation is limited to 0.4 dB for the amplifier designed with the standard composition fiber whereas 0.2 dB are reported for the one made with Ce-codoped fiber after a cumulated dose of ~900 Gy. The mechanisms explaining the positive influences of these two treatments are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.