Abstract

Medical grade poly(vinyl chloride) (PVC) sheets were surface modified by grafting a combination of 2-hydroxyethyl methacrylate (HEMA) and N-vinyl pyrrolidone (NVP) or NVP alone using gamma radiation in an effort to retard the migration of the plasticizer from the PVC matrix. Presence of cupric ions at a concentration of 0.005m was found to be optimal in not only preventing the homopolymerization of the monomers but also producing the highest graft yield at all monomer concentrations used for grafting. The grafted PVC was characterized for its water absorption properties. Surface morphology of the grafted surface was examined using scanning electron microscopy (SEM). PVC sheets grafted on both sides as well as on one side were characterized for their physical and mechanical properties in order to assess their suitability in biomedical applications. While the tensile strength and percentage elongation values of PVC sheets grafted on both sides showed a downward trend with increasing graft yield, these properties were not drastically affected by surface modification on one side only at graft yields pertinent to prevent the migration of the plasticizer. Measurement of Shore A hardness and optical transparency of the migration resistant sheetings showed that such properties were not seriously affected by surface modification thus rendering them suitable for their intended applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.