Abstract

It is well known that a receding mirror in Minkowski spacetime can model the formation of a black hole, producing Hawking-like radiation at late times. We ask what an observer would need to do to discern whether the radiation is fermionic or bosonic. Specialising to massless fields in 1 + 1 dimensions, we find that an Unruh-DeWitt detector accomplishes this: the late time transition rate of a detector coupled linearly to the scalar density of a spinor field is proportional to the Helmholtz free energy density of a fermionic thermal bath, hence showing a clear sign of Fermi–Dirac statistics, with no counterpart in the response of a detector coupled linearly to a scalar field or its derivative. By contrast, an observer examining just the stress–energy tensor sees no difference between a fermion and a boson, neither at late times nor early.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.