Abstract
When an electric charge is supported at rest in a static gravitational field, its electric field is not supported with the charge, and it falls freely in the gravitational field. Drawing the electric field lines continuously in time, we find that they always emerge from the charge, but the electric field is curved and there is a stress force between the freely falling (curved) field and the static charge. The charge radiates and the work done by the gravitational field to overcome the stress force is the source for the energy radiated by the supported (static) charge. {\it A static charge in a gravitational field radiates, as predicted by the principle of equivalence}. This mechanism is similar to the one applied to an electric charge accelerated in a free space. In this case, the electric field is not accelerated with the charge. The electric field is curved, and there is a stress force between the charge and its field. The work done in overcoming the stress force is the source of the energy radiated by the accelerated charge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.