Abstract

In a previous paper acoustic radiation force on a lipid sphere in a 100-MHz focused Gaussian field was calculated to demonstrate the acoustic tweezer effect near the focus. The theoretical formulation was based on the situation where the sphere is centered along the beam axis. Given intensity distribution independent of the x axis, it was then approximated by a cylindrical model for the sake of simplicity. Only the axial forces were considered because no lateral forces exist due to an object's symmetry. However, it was difficult to employ the same technique to the more general case when it is off the beam axis. To overcome the limitation, in this paper the previous model is modified to compute two additional lateral forces by carrying out the projection over arbitrary incident planes to restrict the integration limits. For different sizes of the sphere, the magnitudes of the net forces in three orthogonal directions are computed. The results show that the acoustic tweezer can be realized more easily in the lateral directions than in the axial directions. Differing from the axisymmetric case, the spheres of small sizes tend to be more strongly attracted than the larger ones in the lateral directions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call