Abstract

ObjectiveThe aim of this work was to determine the radiation dose received by infants from radiographic exposure and the contribution from scatter radiation due to radiographic exposure of other infants in the same room.Materials and MethodsWe retrospectively evaluated the entrance skin doses (ESDs) and effective doses of 23 infants with a gestational age as low as 28 weeks. ESDs were determined from tube output measurements (ESDTO) (n = 23) and from the use of thermoluminescent dosimetry (ESDTLD) (n = 16). Scattered radiation was evaluated using a 5 cm Perspex phantom. Effective doses were estimated from ESDTO by Monte Carlo computed software and radiation risks were estimated from the effective dose. ESDTO and ESDTLD were correlated using linear regression analysis.ResultsThe mean ESDTO for the chest and abdomen were 67 µGy and 65 µGy per procedure, respectively. The mean ESDTLD per radiograph was 70 µGy. The measured scattered radiation range at a 2 m distance from the neonatal intensive care unit (NICU) was (11-17 µGy) per radiograph. Mean effective doses were 16 and 27 µSv per procedure for the chest and abdomen, respectively. ESDTLD was well correlated with ESDTO obtained from the total chest and abdomen radiographs for each infant (R2 = 0.86). The radiation risks for childhood cancer estimated from the effective dose were 0.4 × 10-6 to 2 × 10-6 and 0.6 × 10-6 to 2.9 × 10-6 for chest and abdomen radiographs, respectively.ConclusionThe results of our study show that neonates received acceptable doses from common radiological examinations. Although the contribution of scatter radiation to the neonatal dose is low, considering the sensitivity of the neonates to radiation, further protective action was performed by increasing the distance of the infants from each other.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call