Abstract

The radiation enhanced diffusion (RED) of three key fission products in SiC: cesium, europium, and strontium was investigated following ion irradiation at a damage rate of 4.6 × 10−4 dpa s−1 at temperatures between 900° C and 1100° C. The radiation enhancement of diffusion was as large as 107 at 900° C, and dropped to a value of 1 by 1300° C for all but cesium grain boundary diffusion. Strontium and cesium exhibited several orders of magnitude enhancement for both mechanisms. Europium enhancement was greatest at 900° C, but dropped to the thermal rates at 1100° C for both mechanisms. The trends in the RED mechanism correlated well with the point defect concentrations suggesting that both carbon and silicon vacancy concentrations are important for fission product diffusion. These constitute the first radiation-enhanced diffusion measurements of strontium, cesium and europium in SiC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.