Abstract

AbstractCFD (Computational fluid dynamics) is used to evaluate the thermodynamic second-law effects of thermal radiation in turbulent diffusion natural gas flames. Radiative heat transfer processes in gas and at solid walls are identified as important causes of energy devaluation in the combusting flows. The thermodynamic role of thermal radiation cannot be neglected when compared to that of heat conduction and convection, mass diffusion, chemical reactions, and viscous dissipation. An energy devaluation number is also defined, with which the optimum fuel–air equivalence for combusting flows can be determined. The optimum fuel–air equivalence ratio for a natural gas flame is determined to be 0.7. The CFD model is validated against experimental measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.