Abstract
Abstract Radiation heat transfer affects natural convection of air inside an open ended cavity with a heated horizontal upper plate and an unheated lower parallel plate. The influence is mainly due to radiative heating of the lower plate, and plane fluid layer secondary motion could arise. In this paper an experimental study is carried out to describe and to detect the influence of radiation on air flow and on heat transfer coefficient by means of wall temperature profiles, smoke visualization, and air temperature measurements. The analysis is obtained for an emissivity of the horizontal plates equal to 0.8, for distances between the plates of 20.0, 32.3, and 40.0 mm. By means of flow visualization and local air temperature measurements in the cavity as a function of time, remarkable secondary motion in the cavity is observed when qΩ is equal to 120 W/m2. Measurement of the air temperature in the cavity also shows that radiation causes and damps secondary motion at the same time. Profiles of the mean value of the air temperature as a function of the x and y coordinates confirm both the main flow path inside the cavity and radiation effects on convective heat transfer. Finally, correlations related to average Nusselt number are proposed for natural convection as well as for heat transfer as a whole, that is convection along with radiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.