Abstract

In this paper, we examine radiation effects on Marangoni convection flow and heat transfer in pseudo-plastic non-Newtonian nanofluids driven by a temperature gradient. The surface tension is assumed to vary linearly with temperature. Four different types of nanoparticles; namely, Cu, Al2O3, CuO and TiO2, are considered with sodium carboxymethyl cellulose (CMC)–water used as a base fluid. The effects of power-law viscosity on temperature field are taken into account by assuming that the temperature field is similar to the velocity field and that the thermal conductivity of the non-Newtonian fluids is power-law-dependent on the velocity gradient. The governing partial differential equations are reduced to a series of ordinary differential equations using similarity transformations, the solutions are obtained numerically by the shooting method. The effects of the solid volume fraction, the Power-law Number, the Marangoni Number and the Radiation Number on the velocity and temperature fields are analyzed and discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.