Abstract

High-level nuclear waste in the United States comprises large volumes (tens of millions of cubic meters), high total activities (billions of Curies) and highly diverse and complex compositions. The principal sources of nuclear waste are: (i) spent nuclear fuel from commercial and research nuclear reactors; (ii) liquid waste produced during the reprocessing of commercial spent nuclear fuel; (iii) waste generated by the nuclear weapons and naval propulsion programs. The latter category now includes over 100 metric tons of plutonium and many hundreds of tons of highly enriched uranium from the dismantling of nuclear weapons. Most of these wastes will require chemical treatment, processing and solidification into waste forms for permanent disposal. The long-term effects of radiation on waste form solids is a critical concern in the performance assessment of the long-term containment strategy. In the case of spent nuclear fuel, the radiation dose due to the in-reactor neutron irradiation is already substantial, and additional damage accumulation during disposal is not anticipated to be significant; thus, this is not a subject addressed in this review paper. In contrast, the post-disposal radiation damage to waste form glasses and crystalline ceramics is significant. The cumulative α-decay doses which are projected for nuclear waste glasses reach values of 10 16 α-decays g −1 in 100 yr. Similarly, crystalline waste forms, such as Synroc will reach values of > 10 18 α-decay events g −1 in 1000 yr for a 20 wt% waste loading. These doses are well within the range for which important changes in the physical and chemical properties may occur, e.g. the transition from the crystalline-to-aperiodic state in ceramics. This paper provides a comprehensive review of radiation effects (due to γ-, β- and α-decay events, as well as from actinide doping experiments and particle irradiations) on nuclear waste form glasses and crystalline ceramics, particularly Synroc phases, zircon, apatite, monazite and titanite. The paper also includes recommendations for future research needs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call