Abstract

We report on the influence of different types of radiation on the nitride read-only memories (NROM®). The memory cells were irradiated by light ions (Boron), X-rays and γ-rays. Memory transistor parameters, such as threshold voltage and subthreshold drain leakage were studied as a function of the accumulated radiation dose and compared to the as-programmed (-erased) devices parameters. Their time evolution was registered in the range from few hours up to 5 months after the irradiation. The NROM® cells showed good radiation robustness up to high accumulated doses. Sufficient program margin (difference of threshold voltage in the programmed state and the read-out voltage level) remained after γ or X irradiation for absorbed doses exceeding 50 krad(Si) and 100 krad(Si), respectively. For Boron irradiation, the programmed devices remained stable up to the fluence of 10 11 ions/cm 2 (equivalent to 1 Mrad(Si) of TID tolerance).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.