Abstract

Ceramics represent a large class of solids with a wide spectrum of applicability, whose structures range from simple to complex, whose bonding runs from highly ionic to almost entirely covalent and, in some cases, partially metallic, and whose band structures yield wide-gap insulators, narrow-gap semiconductors or even superconductors. These solids exhibit responses to irradiation which are more complex than those for metals. In ceramic materials, atomic displacements can be produced by direct momentum transfer to often more than one distinguishable sublattice, and in some cases radiolytically by electronic excitations, and result in point defects which are in general not simple. Radiation-induced defect interaction, accumulation and aggregation modes differ significantly from those found in metals. Amorphization is a frequent option in response to high-density defect perturbation and is strongly related to structural topology. These fundamental responses to irradiation result in significant changes to important applicable properties, such as strength, toughness, electrical and thermal conductivities, dielectric response and optical behavior. The understanding of such phenomena is less well-understood than the simple responses of metals but is being increasingly driven by critical applications in fusion energy production, nuclear waste disposal and optical communications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call