Abstract

A specific cavitation phenomenon occurs inside the stems of trees. The internal pressure in tree conduits can drop down to significant negative values, which causes the nucleation of bubbles. The bubbles exhibit high-frequency oscillations just after their nucleation. In the present study, this phenomenon is modeled by taking into account acoustic waves produced by bubble oscillations. A dispersion equation is derived, which is then used to calculate the resonance frequency and the attenuation coefficient of the bubble oscillations. Radiation damping is found to be predominant in comparison with viscous damping, except for very small bubbles. A typical number of oscillation cycles before the complete damping of the oscillation is found to be of the order of 10, as observed for cavitation bubbles in biomimetic synthetic trees.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call