Abstract

AbstractA geometrically thin, optically thick, warped accretion disk with a central source of luminosity is subject to non-axisymmetric forces due to radiation pressure; the resulting torque acts to modify the warp. Initially planar accretion disks are unstable to warping driven by radiation torque, as shown in a local analysis by Pringle (1996) and a global analysis of the stable and unstable modes by Maloney, Begelman, & Pringle (1996). In general, the warp also precesses.We discuss the nature of this instability, and its possible implications for accretion disks in X-ray binaries and active galactic nuclei. Specifically, we argue that this effect provides a plausible explanation for the misalignment and precession of the accretion disks in X-ray binaries such as SS 433 and Her X–l; the same mechanism explains why the maser disk in NGC 4258 is warped.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.