Abstract

To retrospectively evaluate the image quality and radiation dose of 100-kVp scans with sinogram-affirmed iterative reconstruction (IR) for unenhanced head CT in adolescents. Sixty-nine patients aged 12-17 years underwent head CT under 120- (n = 34) or 100-kVp (n = 35) protocols. The 120-kVp images were reconstructed with filtered back-projection (FBP), 100-kVp images with FBP (100-kVp-F) and sinogram-affirmed IR (100-kVp-S). We compared the effective dose (ED), grey-white matter (GM-WM) contrast, image noise, and contrast-to-noise ratio (CNR) between protocols in supratentorial (ST) and posterior fossa (PS). We also assessed GM-WM contrast, image noise, sharpness, artifacts, and overall image quality on a four-point scale. ED was 46% lower with 100- than 120-kVp (p < 0.001). GM-WM contrast was higher, and image noise was lower, on 100-kVp-S than 120-kVp at ST (p < 0.001). CNR of 100-kVp-S was higher than of 120-kVp (p < 0.001). GM-WM contrast of 100-kVp-S was subjectively rated as better than of 120-kVp (p < 0.001). There were no significant differences in the other criteria between 100-kVp-S and 120-kVp (p = 0.072-0.966). The 100-kVp with sinogram-affirmed IR facilitated dramatic radiation reduction and better GM-WM contrast without increasing image noise in adolescent head CT. • 100-kVp head CT provides 46% radiation dose reduction compared with 120-kVp. • 100-kVp scanning improves subjective and objective GM-WM contrast. • Sinogram-affirmed IR decreases head CT image noise, especially in supratentorial region. • 100-kVp protocol with sinogram-affirmed IR is suited for adolescent head CT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call