Abstract

PurposeWe investigated whether a tungsten functional paper (TFP) shield and/or organ-based tube current modulation (TCM) can reduce the dose to the eye lens. Materials and methodsAll scans were performed using our routine head examination protocol (spiral acquisition, 120 kVp, noise Index 3.5) with an anthropomorphic head phantom. The dose reduction rate was measured by the following methods with a scintillation fiber optic dosimeter: (a) without any dose reduction techniques (Original scan), (b) TFP shield, (c) TCM, and (d) TFP shield plus TCM. Image noise and CT number were obtained and compared between the three groups. In addition, image noise in method (d) was measured with varying distances between the TFP shield and eye lens. ResultsThe reduction rates using TFP shield, TCM, and TFP shield plus TCM compared with those for the Original scan were 17.8 %, 13.6 %, and 27.7 %, respectively. Image noise (mean ± standard deviation) in the anterior region for the Original scan, TFP shield, TCM, and TFP shield plus TCM were 4.1 ± 0.2, 4.6 ± 0.2, 4.4 ± 0.3, and 5.0 ± 0.2, while the CT numbers were 19.3 ± 0.8, 23.8 ± 0.8, 19.6 ± 0.8, and 24.1 ± 0.8, respectively. Increasing the distance between the TFP and the eye significantly decreased the CT number when using TFP shield plus TCM (p < .05). ConclusionTFP shield plus TCM reduced the dose to the eye lens in head CT while maintaining image quality with an air gap between the TFP and skin surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.