Abstract

AimNeutron-activated holmium-166 (166Ho) is an excellent radionuclide for internal radiation therapy (Eβmax = 1.84 MeV) with an appropriate half-life (26.8 h), which emits photons (81 keV, 6.2%) suitable to be detected by gamma cameras. Preparing and injecting radiopharmaceuticals containing beta/gamma emitting holmium-166 implies a risk of exceeding the upper limit for skin and hand radiation equivalent doses (500 mSv/an). This study was aimed to estimate the whole body and finger exposure for staff responsible for dose preparation, dose dispensing, and dose injection of holmium-166 therapy. MethodsTo measure the finger dose from external exposure, all staff members wore TLD dosimeters. Personal dose equivalents Hp(10) were measured using electronic personal dosimeters (EPD MK2, Thermo Fischer Scientific) placed on the left side of the chest. During our study, staff members administered more than 40 166Ho-based therapies for preclinical trial. Appropriate radiation safety procedures and shielding were applied at each stage. ResultsIn this study, the whole body doses were 2.80 ± 1.56 nSv MBq−1 for one 166Ho-therapy preparation/formulation, and 2.68 ± 1.70 nSv MBq−1 for one intravenous injection. Maximum finger doses were 2.9 ± 0.2 μSv MBq−1 and 2.5 ± 0.3 μSv MBq−1 for preparation and injection, respectively (activities injected: 72 ± 3 MBq). ConclusionExtrapolated annual doses from 300 166Ho radionuclide therapies were lower than the annual limit doses for skin and the whole body, 500 mSv and 20 mSv, respectively, reported in the European Directive EURATOM 96/29 when applying appropriate radiation protection standards. However, these doses have to be added to other diagnostic or therapeutic protocols, performed in preclinical facilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call