Abstract

Gamma Knife surgery (GKS) is frequently used to treat patients with metastasis to the brain. Radiosurgery seeks to limit radiation to the brain tissue surrounding the metastatic deposits. In patients with such lesions, a low radiation dose to the eloquent brain may help to prevent adverse effects. In this study the authors aimed to quantify the radiosurgical dose delivered to the anterior temporal structures in cases of metastatic brain lesions. They also evaluated the incidence and timing of new metastases in the anterior temporal lobes (ATLs) in patient cohorts that underwent GKS with or without whole-brain radiation therapy (WBRT). The authors retrospectively analyzed 100 patients with metastatic brain lesions treated with GKS at the University of Virginia Health System. The anterior 5 cm of the temporal lobes and the hippocampi within the ATLs were contoured on the Gamma Knife planning station. Using the dose-volume histogram function in GammaPlan, treatment parameters for the metastases as well as radiation doses to the contoured ATLs and hippocampi were measured. Patients had clinical and MR imaging follow-ups at 3-month intervals. The ATLs and hippocampal regions were evaluated for the formation of new metastases on follow-up imaging. The demographic data--age, sex, Karnofsky Performance Scale score, number of temporal metastases at the time of GKS, total volume of metastatic tumors per patient, and number of intracranial metastatic deposits--were similar in the 2 cohorts. In patients without an ATL metastasis at the time of GKS, the mean maximum, 50% volume, and integral doses of radiation to the anterior temporal structures were very low: 2.6 Gy, 0.6 Gy, and 36.3 mJ in the GKS cohort and 2.1 Gy, 0.6 Gy, and 40.9 mJ in the GKS+WBRT cohort, respectively. Among the ATLs that had not shown a brain metastasis at the time of GKS, 8 of 92 temporal lobes in the GKS cohort and 10 of 89 in the GKS+WBRT cohort demonstrated a new anterior temporal lesion on follow-up MR imaging. Gamma Knife surgery delivered a low dose of background radiation to the ATLs and hippocampi. The incidence of a new ATL metastasis in the GKS cohort was not higher than in the GKS+WBRT cohort. Gamma Knife surgery in the management of brain metastases limits the delivery of radiation to eloquent brain tissue without evidence of an appreciable propensity to develop new metastatic disease in the ATLs or hippocampi. This therapeutic approach may help to avoid unintended neurological dysfunction due to nonspecific delivery of radiation to eloquent brain tissues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call