Abstract
Electronic properties of radiation damage produced in 4H-SiC epilayer by proton and alpha particle irradiation were investigated and compared. 4H-SiC epilayers, which formed the low doped n-base of Schottky barrier power diodes, were irradiated to identical depth with 550 keV protons and 1.9 MeV alphas. Radiation defects were then characterized by capacitance deep-level transient spectroscopy and C-V measurements. Results show that both projectiles produce identical, strongly localized damage peaking at ion’s projected range. Radiation defects have a negligible effect on dynamic characteristic of irradiated 4H-SiC Schottky diodes, however acceptor character of introduced deep levels and their high introduction rates deteriorate diode’s ON-state resistance already at very low irradiation fluences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.