Abstract

Molecular dynamics method has been applied to simulate collision cascades initiated by primary knock-on atoms (PKAs) with energy EPKA = 5, 10, 15, and 20 keV at temperatures T = 100, 300, and 600 K on the aluminum surface. A series of 48 cascades has been simulated for each pair of parameters (EPKA, T), providing a representative statistical sampling. The number of Frenkel pairs NFP, the fraction of vacancies evac and self-interstitial atoms (SIA) eSIA in clusters of point defects, the average size of vacancy 〈Nvac〉 and self-interstitial 〈NSIA〉 clusters, the average number of vacancy 〈Yvac〉 and self-interstitial 〈YSIA〉 cluster per cascade yield, and the average time τc of cascade relaxation as a function (ЕPKA, T) have been found. The level of primary damage, 〈evac〉, 〈eSIA〉, 〈Nvac〉, 〈NSIA〉, 〈Yvac〉 and 〈YSIA〉 have been found to be higher in surface cascades than those in displacements cascades in the bulk of material under the same simulation conditions. The morphology of surface cascades and the spatial separation of self-interstitial atoms and vacancies has been studied. Icosahedral self-interstitial clusters have been identified in displacement cascades in aluminum for the first time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call