Abstract

In this study, Fe3+ self-ion irradiation is used as means of introducing irradiation damage in ferritic/martensitic (F/M) steel and oxide dispersion strengthened (ODS) steel. The ion accelerator named DuET (at Kyoto University, Japan) was used for irradiation with 6.4 MeV Fe3+ ions at 300 °C. The total number of accelerated ions was 2.5 × 1020 ions/m2, and the maximum damage rates in the F/M and the ODS steels were estimated to be roughly 6 dpa. The irradiation-induced hardness change in the damaged layer was evaluated by using nano-indentation. The F/M steel and the ODS steel commonly exhibited irradiation hardening; however, the irradiation hardening was more active in the F/M steel than in the ODS steel. The microstructure evolutions after the irradiation were investigated; point or line defects were dominantly observed in the F/M steel, while small circular cavities were typically observed in ODS steel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call