Abstract

Carbon fiber composites (CFC) are, among other applications, already in use as low-impedance collimating elements for intercepting TeV-level protons machines, like the CERN Large Hadron Collider. Towards a comprehensive understanding of these materials’ properties and behavior, a series of radiation damage campaigns have been undertaken in order to quantitively investigate the response of AC-150 K CFC to high proton fluences. The CFCs dimensional changes, stability, micro-structural evolution, and structural integrity below and above 5 × 1020 p/cm2 fluence threshold were studied. The irradiating particles were protons of kinetic energies in the range of 130–200 MeV. The effects of the irradiation temperature (~90–180 °C and 280–500 °C) combined with the proton fluence on the dimensional stability and the microstructural evolution of this anisotropic two-dimensional composite structure were studied using precision dilatometry and X-ray diffraction. Our results shed light on the fluence-based limitations for these composite materials. Furthermore, we compare these results with reference unirradiated graphite, and we discuss the similarities and differences in the dimensional changes and post-irradiation annealing properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.