Abstract

Radiation damage induced by high-energy (200 keV) electron irradiation in zircon has been studied thoroughly using imaging, diffraction, and electron energy-loss spectroscopy techniques in transmission electron microscopy. Both structural and compositional changes during the damage were measured using the above techniques in real time. It was found that the damage was mainly caused by the preferential sputtering of O. The loss of O occurred initially within small sporadic regions with dimension of several nanometers, resulting in the direct transformation of zircon into ZrxSiy. These isolated patches gradually connect each other and eventually cover the whole area of the electron beam. These differ from the previous observations either in the self-irradiated natural and synthetic zircon or in ion-beam irradiated thin zircon specimen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call