Abstract

The mechanism of interaction between fast neutrons and atoms of a metal lattice is described. A cross-section for the production of vacancies in iron by neutrons, as a function of neutron energy, is derived and shown to be roughly proportional to the product of the neutron energy and the isotropic elastic scattering cross-section. The vacancy production cross-section is applied to several reactor spectra and the results show that an appreciable fraction of the radiation damage in crystalline solids, particularly metals, can be caused by neutrons having energies below 1 Mev. Also, the assumption that the neutrons responsible for radiation damage have a fission spectrum distribution appears to be inapplicable in reactor situations. In fact, no quantitative measure of total neutron exposure can be made without knowledge of the spectral shape. Steel is chosen as an example because of the interest in its properties as a function of irradiation; hence the model is developed based on interaction of neutrons with iron atoms. Some important limitations of the method are cited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.