Abstract

In view of the fact that there is no information on the microstructure of specimens of boron carbide containing up to 60% B 10 isotope and irradiated at a temperature of 350-370 C, the authors undertook a detailed study of the radiation-induced defects in such material. The microstructure of unexposed boron carbide is characterized by the presence of pores originating during the technological process, dislocations, and twins. Irradiation of B/sub 4/C leads to the formation of defects measuring 3-20 nm and exhibiting a contrast that is characteristic of dislocation loops or two-dimensional second-phase precipitates and spherical pores measuring 1-4 nm in diameter. A specific microstructural feature of irradiated boron carbide is the formation of 30 nm wide zones that are free from pores and other radiation-induced defects near the gain boundaries. The obtained results indicate that irradiation of boron carbide in the 350-370 C range leads to the formation of several types of defects that can be detected by their image contrast under different conditions of photographing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.