Abstract
Advances in vacuum ultraviolet thin-film filter technology have been made through the use of filter designs with multilayers of materials such as Al(2)O(3), BaF(2), CaF(2), HfO(2), LaF(3), MgF(2), and SiO(2). Our immediate application for these filters will be in an imaging system to be flown on a satellite where a 2 × 9 R(E) orbit will expose the instrument to approximately 250 krad of radiation. Because to our knowledge no previous studies have been made on the potential radiation damage of these materials in the thin-film format, we report on such an assessment here. Transmittances and reflectances of BaF(2), CaF(2), HfO(2), MgF(2), and SiO(2) thin films on MgF(2) substrates, Al(2)O(3) thin films on fused-silica substrates, uncoated fused silica and MgF(2), and four multilayer filters made from these materials were measured from 120 to 180 nm beforeand after irradiation by 250 krad from a (60)Co gamma radiation source. No radiation-induced losses in transmittance or reflectance occurred in this wavelength range. Additional postradiation measurements from 160 to 300 nm indicates 2-5% radiation-induced absorption near 260 nm in some of the samples with MgF(2) substrates. From these measurements we conclude that far-ultraviolet filters made from the materials tested should experience less than 5% change from exposure to up to 250 krad of high-energy radiation in space applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.